

Il trattamento dei pazienti ad alto rischio

Ottimizzazione del trattamento con ipometilanti

Nicola Di Renzo

Lecce

Treatment of MDS General comments

- Advanced age
- Comorbidity and associated diseases frequent
- Great prognostic heterogeneity
- Curative modalities (i.e. allo-SCT) high morbidity and mortality

Risk-adapted treatment essential

MDS: Management Goals by Risk-group

	Low risk	High risk
Treatment Goal	Hematopoiesis	Survival
Clinical Endpoint	■ HI ■ QOL	Alter natural historyDelay AML
Management Considerations	 ESA IMiD IST HMA 	HMAAlloSCTChemotherapy

Is IPSS the better prognostic score to select high-risk patients?

Categorie di rischio IPSS - Distribuzione dei pazienti

Semplice, universalmente accettato, stratificazione prognostica per l'accesso ai farmaci

Greenberg P et al. Blood. 1997;89:2079

WHO classification-based Prognostic Scoring System (WPSS)

0

12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 220 240 Time (months)

J Clin Oncol 2007;25:3503-10; Haematologica. 2011;96:1433-40

IPSS-R: Prognostic Risk Groups/Scores

Variable	0	0.5	1	1.5	2	3	4
Cytogenetics	Very good	-	Good	-	Inter-mediate	Poor	Very poor
BM blasts	<2%	-	>2%<5%	-	5%-10%	>10%	-
Hemoglobin, g/dL	>10	-	8 <10	<8	-	-	-
Platelets	>100	50<100	<50	-	-	-	-
ANC	>0.8	<0.8	-	-	-	-	-

IPSS-R Survival n=7012

0	100 130	200	0 50	100 130	200
	Very Low	Good	Inter- mediate	Poor	Very High
Med. OS	8.7	5.3	3.0	1.6	0.8
AML 25%	NR	10.7	4.0	1.4	0.8

Freedom from AML

Risk group	Score	%
Very low	0-2	19
Good	>2 -3.5	38
Intermediate	>3.5-5	20
High	>5-6	13
Very hjgh	>6	10

Using IPSS-R compared with IPSS

- 27% of IPSS lower-risk "upstaged"
- 18% of IPSS higher-risk "downstaged"

Greenberg PL et al. Blood. 2012;120(12): 2454-2465

New Comprehensive Cytogenetic Scoring System for Primary Myelodysplastic Syndromes (MDS) and Oligoblastic Acute Myeloid Leukemia After MDS Derived From an International Database Merge

Karyotype	N=	%
Normal	1.543	55.1
Abnormal	1.258	44.9

Α

1.0

0.8

0.6

Abbreviations: AML, acute myeloid leukemia; HR, hazard ratio; NR, not reached.

Very good (n = 81; events, 34) Good (n = 1,809; events, 890)

Intermediate (n = 529; events, 312) Poor (n = 148: events, 109)

Very poor (n = 187; events, 158) P (log-rank) < .001

†P < .01.

Overall survival by platelet count in lower risk MDS (IPSS low and intermediate-1)

Independent association with OS in multivariate analysis

Gonzalez-Porras JR et al Cancer 2011;117:5529–37

Overall survival by neutrophil count in IPSS lowrisk MDS

Independent association with OS and AML risk in multivariate analysis

Cordoba I et al. Leukemia Research 2011

Overall Survival and Leukemia-free survival by extent of bone marror fibrosis in MDS

RA, RARS, RCMD ± RS

Patients with grade 2-3 fibrosis had reduced OS and LFS compared to patients with grade 0-1

Della Porta MG et al . J Clin Oncol 27:754-762. 2008

Risk-adapted treatment of MDS definition of higher risk patients

- IPSS int-2 or high and/or WPSS high or very high and /or IPSS-R high or very high
- IPSS int-1 and/or WPSS or IPSS-R intermediate with one or more of the following features
 - High or very high risk cytogenetics (by IPSS-R)
 - Severe neutropenia (<0.5 x 10⁹ PMN/L)
 - Severe thrombocytopenia (<30 x 10⁹ platelets/L)
 - Moderate/severe BM fibrosis (grade2-3)

Symptomatic anemia should be the only remaining reason for treatment in patients with lower-risk MDS

Sanz G et al. Haematologica (Spanish ed.) 2012; 97 (suppl 5):1-58.'attuale approccio clinico al paziente con Sindrome Mielodisplastica

Hypomethylating Cytosine Analogs

High-dose decitabine causes DNA synthesis arrest, leading to cytotoxicity. Low-dose decitabine induces DNMT inhibition with minimal cytotoxicity

Santini V, Kantarjian, HM, Issa, JP. Ann Intern Med 2001, Apr 3;134(7):573-86. L'attuale approccio clinico al paziente con Sindrome Mielodisplastica

Hypomethylating agents in MDS

Azacitidine phase III survival study (AZA-001): design

Randomization

Higher-risk MDS (Int-2) (N = 358)

Investigator selection of conventional care regimen

Stratification according to FAB and IPSS classifications

Aza 75 mg/m² daily for 7 days every 28 days (n = 179)

Primary end point: Overall Survival

Conventional care regimen (n = 179)

- Best supportive care only (n=105)
- Low-dose cytarabine (20 mg/m² daily for 14 days every 28–42 days) (n=45)
- Standard chemotherapy (7 + 3) (n=25)

Treatment continued until unacceptable adverse events or transformation to AML or disease progression

Fenaux P, et al. Lancet Oncol. 2009;10:223-32.

Azacitidine vs CCR: IWG 2000 Response and HI

Response	AZA N=179 (%)	CCR N=179 (%)	BSC N=105 (%)	LDAC N=49 (%)	Std Ind N=25 (%)	P-Value AZA vs CCR
Overall (CR+PR)	29	12	5	12	40	0.0001
CR	17	8	1	8	36	0.02
PR	12	4	4	4	4	0.009
IWG HI						
Major+Minor	49	29	31	25	28	<0.0001
HI-E Major	40	11	8	10	22	<0.0001
HI-P Major	33	14	10	19	20	0.0003
HI-N Major	19	18	20	11	24	0.87

Fenaux P, et al. Lancet Oncol. 2009;10:223-32.

Azacitidine prolongs overall survival in patients with IPSS Int-2- or High-risk MDS

CI, confidence interval; HR, hazard ratio; ITT, intent-to-treat.

Azacitidina: tempo alla trasformazione in AML o al decesso per tutti i pazienti

AZA vs CCR Survival According to CCR and Cytogenetics

Patient Groups	AZA Med. OS [mos]	CCR Med. OS [mos]	<i>P</i> value Log rank
All Patients	24.4	15	0.0001
CC Regimen	24.4	BSC 11.5	0.0003
		LDAC 15.3	0.016
		Std CT 15.7	0.19
IPSS Cytogenetics			
Good	NR	17.1	0.030
Intermediate	26.3	17.0	0.017
Poor	17.2	6.0	0.011

Patients with 7/del(7q) cytogenetic abnormality AZA *vs* CCR

Fenaux P, et al. Lancet Oncol. 2009;10:223-32.

Low-dose Decitabine vs Best Supportive Care Phase III study design (EU Study)

Low-dose Decitabine vs BSC Best response to treatment

	BSC N=114 (%)	Decitabine N=119 (%)
Complete Remission	0 (0.0)	CR + PR
Partial Remission	0 (0.0)	19.3%
Hematologic Improvement	2 (1.8)	18 (15.1)
Stable Disease	25 (21.9)	17 (14.3)
Progressive Disease	78 (68.4)	35 (29.4)
Hypoplasia	0 (0.0)	17* (14.3)
Response inevaluable	9 (7.9)	9 (7.6)

Decitabine <u>do not prolong</u> overall survival compared with BSC

Decitabine *prolongs Progression-free survival* compared with BSC

Decitabine <u>do not prolong</u> AML-free survival compared with BSC

Comparison between AZA and DAC Studies

	5-AZA %	DAC %
Median age (year)	69	69
IPSS Int-1 Int-2 High	3 43 46	7 54 39
Cytogenetic good Intermediate Poor	46 21 28	32 7 48
Time from diagnosis ≥ 3 months	17	50
CR	17	13.4
CR + PR	29	19.3
Median OS (months)	24.4	10.1

Fenaux P, et al. Lancet Oncol. 2009;10:223-32.

Why so poor results with Decitabine compared to 5-Azacitidine

- DAC given up to 8 cycles, depending on clinical response or toxicity
- Only 26% of patients received all eight courses of DAC
- 5-Aza given until PD or toxicity
- 5-Aza given for a median of 9 cycles
- 86% of patients receiving 5-AZA remained on 75 mg/m² per day with no dose adjustments
- The median 5-AZA cycle-length was 28 days

Lubbert M, et al. J Clin Oncol. 2011;29:1987-96

Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia

Response data (95	patients) b	- 20 mg/m ² IV daily for 5 days			
Response	No. of patients (%)	5-day IV	5-day SC	10-day IV	 20 mg/m² daily for 5 days; 10 mg/m² IV daily for 10 day
Complete response	32 (34)	39%	21%	24%	
Partial response	1 (1)				
Marrow CR	10 (11)		0.9	** ***********************************	
Marrow CR + other HI	13 (14)		≥ 0.8 0.7	**************************************	* ##+*;- ##Q
Hematologic improvem	ient		opapi	Median OS:	· · · · · · · · · · · · · · · · · · ·
Single lineage	9 (9)			19 months	
2 or 3 lineages	4 (4)]	Surv.	The 5	-#
Objective response	69 (73)		0.2	was s	selected as optimal
		_	0.0		12 18 24

Months

Decitabine: The Alternative Dosing for Outpatient Treatment (ADOPT Trial)

N=99 de novo or s-MDS of any FAB subtype and IPSS score ≥ 0.5

Decitabine 20 mg/m² IV for 5 days

Response (IWG 2006 Criteria), n (%)	Patients (N = 99)
Overall complete response rate (CR + marrow CR)	32 (32)
Overall response rate (CR + marrow CR + PR)	32 (32)
Overall improvement rate (CR + marrow CR + PR +HI)	50 (51)
н	18 (18)
Rate of SD or better (CR +mCR + PR + HI + SD)	74 (75)

Steensma DP, et al. J Clin Oncol. 2009;27:3842-3848.

A prospective, multicenter, observational study of long-term decitabine treatment in patients with MDS

N=13	2	1				-
WHO subtype RCUD RARS RCMD 44 RAEB-1 34 RAEB-2 34 MDS-U Del(5q) CMML-1 CMML-2 Unclassified IPSS risk categc Intermediate 84 High 14	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Decitabine 2 day IV d1-5 e	20 mg/m²/IV every 4 weeks	ResponseCR PR mCR with HI mCR without HI HI only* Patient experienced HI $SD^{\#}$ ORR (CR + PR + mCR + H 95% CI ⁺ CR + PR + mCR + HI + SI	n (%) 36 (27.27%) 3 (2.27%) 8 (6.06%) 11 (8.33%) 25 (18.94%) 72 48 (36.36%) 48 (36.36%) 48 (36.36%) 48 (54.04% -71.12%) I 131 (99.24%)	
25 20 19 20 (22.9%) 15 10 (12.1%) 5 0 (22.9%) 10 (12.1%) 10 (12.1%) 5 0	23 27.7%) 6 (7.2%) 1 (1.2%)	4 (6.0%) (4.8%) 2 (2.4%) 6)	1,00	yr OS: 60.9%, -PFS: 51.0%		+ Censored
1 2 3	4 5 6 Treatment course number	7 8 >8 r	0 100	200 300 400 Survival time (Day)	500 600	700 800

Seong Hyun Jeong et al. Oncotarget, Vol. 6, No. 42. 2015

HMAs in real life: overall survival

- 2025 eligible MDS patients diagnosed between 2004 and 2011 who received ≥ 10 doses of HMA identified from SEER Registry
- Higher-risk patients (n = 523)

Caratteristiche	AZA(%)	DEC (%)	
Totali	1580 (78)	445 (22)	
Età:			
66-69	207 (13,1)	74 (16,6)	
70-74	357 (22,6)	139 (31,2)	
75-79	450 (28,5)	109 (24,5)	
80+	566 (35,8)	123 (27,6)	
Mediana cicli HMA	6 [3-10]	6 [4-10]	
Cicli HMA ≥ 4	1163 (73,6)	339 (76 <i>,</i> 2)	
Cicli HMA ≥ 6	825 (52,2)	227 (51,0)	
MDS risk group:			
Lower risk	406 (25,7)	94 (21,1)	
High risk	395 (25,0)	128 (28,8)	
Other (MDS-NOS, t- MDS)	779 (49,3)	223 (50,1)	

Zeidan AM.et al. BJH doi: 10.1111/bjh.14305. 2016

HMAs in real life: AZA vs DAC

- □ No significant survival difference was found between azacitidine and decitabine in patients with MDS, including RAEB.
- Population-based survival of azacitidine-treated RAEB patients was substantially shorter than in the AZA-001 clinical trial (11 versus 24.5 months)

Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine

*Raphael Itzykson,¹ *Sylvain Thépot,^{1,2} Bruno Quesnel,³ Francois Dreyfus,⁴ Odile Beyne-Rauzy,⁵ Pascal Turlure,⁶ Norbert Vey,⁷ Christian Recher,⁸ Caroline Dartigeas,⁹ Laurence Legros,¹⁰ Jacques Delaunay,¹¹ Célia Salanoubat,¹² Sorin Visanica,¹³ Aspasia Stamatoullas,¹⁴ Francoise Isnard,¹⁵ Anne Marfaing-Koka,¹⁶ Stephane de Botton,¹⁷ Youcef Chelghoum,¹⁸ Anne-Laure Taksin,¹⁹ Isabelle Plantier,²⁰ Shanti Ame,²¹ Simone Boehrer,^{1,2} Claude Gardin,¹ C. L. Beach,²² Lionel Adès,^{1,2} and Pierre Fenaux,^{1,2} on behalf of the Groupe Francophone des Myelodysplasies (GFM)

French Patient Name Program

282 patients with MDS IPSS int-2 or High without previous high dose CT or SCT who received at least 1 cycle of AZA

Variable	Point
PS ECOG > 2	1
Intermediate-risk cytogenetics	1
Poor-risk cytogenetics	2
Presence of circulating blasts ≥ 15%	1
RBC transfusion dependency 4 units/8 weeks	1

BLOOD, 2011; 117:403-411 BLOOD, 2012; 119:6172-6173

Score	Risk-group	Median OS (months)	
0	Low (n=30)	32.1	
1-3	Intermediate (n=191)	15	
4-5 High (n=48)		6.1	

Outcome of High-Risk Myelodysplastic Syndrome After Azacitidine Treatment Failure

Thomas Prébet, Steven D. Gore, Benjamin Esterni, Claude Gardin, Raphael Itzykson, Sylvain Thepot, François Dreyfus, Odile Beyne Rauzy, Christian Recher, Lionel Adès, Bruno Quesnel, C.L. Beach, Pierre Fenaux, and Norbert Vey

435 patients with high-risk MDS and RAEB-T evaluated for outcome after AZA failure

J Clin Oncol 2011; 29:3322-3327

Outcome of patients failing HMA is poor: Decitabine

Jabbur E. et al . Cancer 2010

Outcome of patients failing HMA is poor: 5-AZA

	Type of salvage	Ν	ORR	Median OS (months)
 -	Unknown	165	NA	3.6
-	Best supportive care	122	NA	4.1
-	Low-dose chemotherapy	32	0/18	7.3
-	Intensive chemotherapy	35	3/22	8.9*
-	Investigational therapy	44	4/36	13.2*†
-	Allogeneic transplantation	37	13/19	19.5* [†]

Prebet T et al. J Clin Oncol 2011; 29:3322-3327
Sequential treatment with HMA could be an alternative approach in patients failing first line HMA

Enrollment in clinical trial should be the strongly encouraged in HMA failure Sequential use of HMA is a common practice given limited alternatives

		DAC after AZA (n=21)	AZA after DAC (n=10)
Time to first line from Diagnosis	Median (months)	10	2.4
1 st line cycles	mean	8	4
1 st line best response (HI+)	%	63	50
2 nd line cycles		4	6
2 nd line best response (HI+)	%	19	40
Median OS	monthe	170	22
Start of 2 nd line	months	17.8	
AML transformation	%	29	20

Apuri S. et al. Clinical Lymphoma, Myeloma and Leukemia. DOI:10.1016/j.clml.2016.10.003 L'attuale approccio clinico al paziente con Sindrome Mielodisplastica

Clinical Effect of Point Mutations in Myelodysplastic Syndromes

Papaemmanuil E et al. Blood. 2013;122:3616-27 Cazzola M, Della Porta MG, Malcovati L. Blood 2013;122:4021-34 Della Porta MG et al. Leukemia 2015;29:1502-13

Distribution of recurrent mutations and karyotypic abnormalities in MDS

Any mutation have prognostic significance independent of IPSS-R

Bejar R and Steensma DP. Blood 2014;124(18):2793-2803

Frequency of TP53 alterations in hematological malignancies and correlation with cytogenetic aberrations

Frequency of karyotype class in cases with *TP53* alteration

In the age range 60-80, the TP53 mutation occurs on average in 15% of cases

Stengel A. et al Leukemia 2016; doi: 10.1038/leu.2016.263.

TP53 mutation correlates with a monosomal or complex karyotype

P53 alterations are associated with resistance to chemotherapy

Rucker et al., Blood. 2012;119(9):2114-2121

Model of how cytotoxic therapy shapes clonal evolution in t-AML/t-MDS

Wong N T et al. Nature 2014

TP53 mutations are associated with decreased overall survival in t-AML/t-MDS

- The TP53 mutation is closely related to complex karyotype and further deteriorates the prognosis
- The TP53 mutation is an independent prognostic factor and is the one weigh most in a complex karyotype

Wong N T et al. Nature 2014

TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes

J.S. Welch, A.A. Petti, C.A. Miller, C.C. Fronick, M. O'Laughlin, R.S. Fulton, R.K. Wilson, J.D. Baty, E.J. Duncavage, B. Tandon, Y.-S. Lee, L.D. Wartman, G.L. Uy, A. Ghobadi, M.H. Tomasson, I. Pusic, R. Romee, T.A. Fehniger, K.E. Stockerl-Goldstein, R. Vij, S.T. Oh, C.N. Abboud, A.F. Cashen, M.A. Schroeder, M.A. Jacoby, S.E. Heath, K. Luber, M.R. Janke, A. Hantel, N. Khan, M.J. Sukhanova, R.W. Knoebel, W. Stock, T.A. Graubert, M.J. Walter, P. Westervelt, D.C. Link, J.F. DiPersio, and T.J. Ley

Decitabine 20 mg/m²per day for 10 days in monthly cycles

Characteristics of the Patients

AML n=54 Relapsed AML n=39 MDS n=26

	All Patients	<i>TP53</i> Mutations	Wild-Type <i>TP53</i>	<i>TP53</i> Not Evaluated	
Characteristic	(N=116)	(N=21)	(N = 78)	(N=17)	P Value†
Sequencing performed — no. (%)					
Any type	99 (85)	21 (100)	78 (100)	0	
Exome	39 (34)	7 (33)	32 (41)	0	
264-gene panel	15 (13)	7 (33)	8 (10)	0	
8-gene panel	45 (39)	7 (33)	38 (49)	0	
Male sex — no. (%)	68 (59)	9 (43)	47 (60)	12 (71)	0.21
Age at diagnosis — yr					0.90
Median	74	71	72	76	
Range	29–88	47–86	29–88	50-85	
Disease — no. (%)					
AML	54 (47)	9 (43)	34 (44)	11 (65)	1.00
Relapsed AML	36 (31)	3 (14)	31 (40)	2 (12)	0.04
MDS	26 (22)	9 (43)	13 (17)	4 (24)	0.02
IPSS in patients with MDS — no./total no. (%)‡					
Low	1/26 (4)	0	0	1/4 (25)	
Intermediate 1	8/26 (31)	1/9 (11)	4/13 (31)	3/4 (75)	0.40
Intermediate 2	8/26 (31)	1/9 (11)	7/13 (54)	0	0.08
High	9/26 (35)	7/9 (78)	2/13 (15)	0	0.007
Cytogenetic risk group — no. (%)					
Favorable	5 (4)	0	4 (5)	1 (6)	0.58
Intermediate	66 (57)		54 (09)	11 (65)	<0.001
Unfavorable	43 (37)	20 (95)	19 (24)	4 (24)	<0.001
Not performed	2 (2)		I (1)	1 (6)	

Welch JS et al. N Engl J Med 2016;375:2023-36.

TP53 and Decitabine in AML and MDS Response Median nunber of cycles: 2

		All Patients	TP53 Mutations	Wild-Type TP53	<i>TP53</i> Not Evaluated		
С	haracteristic	(N=116)	(N=21)	(N = 78)	(N=17)	P Value†	
R	esponse — no. (%)						
	Bone marrow blast clearance <5% blasts	53 (46)	21 (100)	32 (41)	0	<0.001	
	Complete remission						
	With recovery of peripheral-blood counts	15 (13)	4 (19)	11 (14)	0	0.73	
	With incomplete count recovery	24 (21)	9 (43)	15 (19)	0	0.04	
	Morphologic complete remission						
	With hematologic improvement	6 (5)	5 (24)	1 (1)	0	0.002	
	Without hematologic improvement	8 (7)	3 (14)	5 (6)	0	0.36	
	No bone marrow blast clearance	63 (54)	0	46 (59)	5 (29)	< 0.001	
	Partial response	9 (8)	0	9 (12)	0	0.05	
ORR= 67% (29/43) unfavorable-risk karyotype							
•	ORR= 34% (24/71) favorable/in	termediate-	risk karyoty	ре			
	Samples not available for evaluation	12 (10)	0	0	12 (71)		

Overall survival according to risk karyotype and TP53 mutation

C Survival According to Risk Karyotype

D Survival According to TP53 Mutation

Welch JS et al. N Engl J Med 2016;375:2023-36.

Hypomethylating agents in MDS

Low-Dose HMAs in LR MDS

- Open-label phase II study
 - Randomized by Bayesian adaptive design; pts more likely to be assigned to betterperforming treatment arm
 - Median follow-up: 20 mos

Low-Dose HMAs in LR MDS: Response Rates

Response,* %	Decitabine (n = 70)	Azacitidine (n = 39)	P Value	Response,* %	Decitabine (n = 70)	Azacitidine (n = 39)	P Value
ORR CR mCR	70 37 9	49 36 5	.03 .90 NR	Blasts ≥ 5% ■ ORR ■ CR	(n = 21) 100 52	(n = 11) 36 18	< .001 .06
HISDPD	24 26 4	8 44 8	NR NR NR	Blasts < 5% ■ HI - ≥ 1 lineage	(n = 45) 36	(n = 27) 48	.29
CCyR PCyR CCyR + PCyR	25 36 61	6 19 25	.12 .02	 HI - all lineages TI at response 	22 32	26 16	.72 .20

→ Strongest predictors of response included BM blasts ≥ 5%, MDS/MPN or CMML diagnosis, high MDA LR MDS score, and IPSS intermediate-1 risk

Low-Dose HMAs in LR MDS

- Strongest predictors of EFS included BM blasts ≥ 5%, MDS/MPN or CMML diagnosis, high MDA LR MDS score, and adverse mutation risk
- Among pts in both arms (N = 113): 1-yr EFS 65%, 1-yr OS 85%

Nonhematologic AEs,* n (%)	Decitabine (n = 73)	Azacitidine (n = 40)	
Nausea	11 (15)	6 (15)	
Fatigue	6 (8)	4 (10)	
Constipation	3 (4)	6 (15)	
Infection/neutropenic fever	5† (7)	2 (5)	
Diarrhea	2 (3)	3 (8)	

Jabbour EJ, et al. ASH 2016. Abstract 226.

Hypomethylating agents in MDS

AZA alone led to outcomes similar to those for standard ICT

Damaj G et at. J Clin Oncol 2012;30:4533-4540 L'attuale approccio clinico al paziente con Sindrome Mielodisplastica

Prior decitabine before BMT (RAEB/RAEB-t) did not increase toxicity and may improve the outcome

- 17 patients with MDS with a median age of 55.5 years (range, 36–66 years)
- decitabine 20mg/m² i.v. daily for 5 days for a median of five cycles

UPN	Days to ANC> 500/mm ³	Days to $plt > 20K/mm^3$	Chimerism (%) on SCT day 30/100	Toxicity (grade)	Acute GVHD (grade)	Chronic GVHD	Best hematologic response after SCT	Relapse after SCT	EFS (mo)	Status last follow up	Overall survival (mo)
1	15	23	100/100	No	Skin (2)	LIM	CR	Yes	33	Alive	35+
2	12	7	100/100	M/N/V (2)	Skin (2) Eve (1)	No	CR	No	24	Alive	24+
3	11	13	100/100	No	GI (2) Skin (1)	No	CR	Yes	7	Dead	8
4	13	17	100/67	N/D/V(1)	Skin (3)	No	CR	Yes	3	Dead	5
5	13	16	100/100	D(2)	Skin (2)	LIM	CR	No	18	Alive	18 +
6	12	14	100/100	N/D(1)	Skin (3)	EXT	CR	No	9	Alive	9+
7	30	Ν	100/100	N/V/M/NF(2)	Skin (1)	No	HI	Yes	3	Dead	7
8	12	14	100/100	No	GI (2) Skin (1)	No	HI	No	5	Dead	5
9	11	12	100/100	N (1)	GI (1)	LIM	CR	No	8	Alive	8 +
10	13	15	100/100	N/M(1)	No	EXT	CR	No	9	Alive	9+
11	12	13	94/95	N/M (1)	GI (1)	No	CR	Yes	5	Alive	9+
12	10	10	100/100	D/arrhythmia (1)	GI (1) Skin (1)	No	HI	No	4	Alive	4+
13	14	Ν	NA	MOF (4)	No	NA	ED	NA	1	Dead	1
14	13	10	84/100	M/N/liver (1)	No	NA	CR	No	3	Alive	3+
15	10	11	100/100	D/M (4)	No	Ν	CR	Yes	17	Alive	22+
16	Failed	Failed	Failed	N (1)	No	NA	NA	NA	2	Dead	6
17	19	35	100100	N/V/M (2)	No	LIM	HI	No	8	Alive	8+

- Median follow-up: 12 months
- Overall Survival : 67%
- Complete Continue Response: 47%

Somatic Mutations Predict Poor Outcome in Patients With MDS After Hematopoietic Stem-Cell Transplantation

Bejar R et al. J Clin Oncol 2014;32:2691-2698.

Impact on outcome of stem cell transplantation of genetic abnormalities and *TP53* mutation/Complex Karyotype in MDS

Decitabine 20 mg/m² d1-10 in AML and MDS Overall survival according to transplant and TP53 mutation

Hypomethylating agents in MDS

5-Aza for non hematologic relapse after allo-HSCT in MDS or AML: RELAZA trial (n=20)

MRD- triggered treatment may be effective strategy for preventing or delaying hematologic relapse

Aza and DLI as first salvage therapy for relapse of AML or MDS after allo-SCT

- Hematological relapse defined as BM blasts
 > 5%, reappearance of blasts in peripheral blood and/or extramedullary disease
- Six cycles Aza 100 mg/m²/day sc d1–5 4QW
- DLI given on the sixth day of every second Aza cycle

Response

ORR 30% CR 23% PR 7% SD 17%

- Median follow-up 817 days (range 732–974)
- 17% alive and free of disease.

Hypomethylating agents in MDS

Overview of current therapies used in combination with hypomethylating agents in MDS

Ball B et al. Leukemia & Lymphoma 2016 DOI: 10.1080/10428194.2016.1228927 L'attuale approccio clinico al paziente con Sindrome Mielodisplastica

Selected clinical trials of HDAC inhibitors in combination with hypomethylating agents in MDS

	UDAC inhibitor	Targots	Salactad study	Study intorvantion			Sunvival
					% WD3		Survivar
_	Phenylbutyrate	Class I and Ila	Gore et al. [25]	PB + AZA Phase I	n = 29	38 14/3/21	-
	Valproic acid	Class Land IIa	lssa et al [28]	VPA + DAC	n — 149		Median OS (Mos)
	valprote dela		1550 Ct ul. [20]	Phase II RCT	58%	51	
				Thuse II, Ker	DAC $n = 70$	31/_/_	11 9
					VPA + DAC n = 79	VPA + DAC	VPA + DAC
						58 [p vs. DAC= 0.4]	11.2
						37/-/- [p vs.	[p vs. DAC = 0.92)
						DAC = 0.51	(p 101 2110 0112)
	Vorinostat	Class I, II, IV	Sekeres et al. [33]	VOR + AZA	N = 276	AZA	Median OS (Mos)
		, ,		Phase II, RCT	82%	37	AZA
				·	AZA, n = 92	24/0/13	15
					VOR + AZA, $n = 91$	VOR + AZA	AZA + VOR
						27 [p vs. AZA =0.16]	17 [log-rank <i>p</i> = .17]
						17/1/9 [CR p vs. AZA	
						0.36]	
	Panobinostat	Class I, II, IV	Garcia-Manero	PAN + AZA	N = 82	AZA	Probability of 1 year
			et al. [<mark>35</mark>]	Phase IIb, RCT	57%	38	Survival
					AZA, <i>n</i> = 42	10/—/—	AZA
					PAN + AZA, n = 40	PAN + AZA	70%
						38	PAN + AZA
		a	a			15/—/—	60% [p vs. AZA = NS]
	Pracinostat	Class I, II, IV	Garcia-Manero	PRA + AZA	N = 1 - 2	AZA	Median OS (Mos)
			et al. [36]	Phase II, RCI	100%	-	AZA
					AZA, $n =$	31/-/55	18.8
					PRA + AZA, n =	PRA + AZA	PRA + AZA
						- 19/ /25	13.7 [HP1 21 pNS]
	Entinoctat	Class	Probat at al [27]		n - 140	10/-/33	$[\Pi K = 1.21, p = N3]$ Modian OS (Mos)
	LIIIIIOStat			Phase II RCT	11 — 149 67%	33	
				Thase II, NCT	$\Delta 7\Delta n = 74$	12/8/12	18
					AZA + FNT $n = 75$	AZA + FNT	FNT + A7A
					M = 75	27 [n vs A7A = NS]	13
						8/7/12	
	Macatinastat		Lugar at al [20]		N — 22		
	molelinostal	$\Pi \cup A \subset [1, 2, 3, 1]$			100%	CR + CRi rate 59%	_
					100/0		

Valproic Acid and 5-Azacytidine in Higher Risk Myelodysplastic Syndromes

	n (%)
Sex	
Male	43 (69.4)
Female	19 (30.6)
Age	
Median (range)	69.6 (52.9-83.2)
Diagnosis	
RAEB	39 (62.90)
RAEBT	19 (30.65)
CMML	4 (6.45)
MDS history	
De novo	60 (97)
Therapy-related	2 (3)
IPSS score	
Intermediate-2	42 (67.74)
High	20 (32.26)
Karyotype	0
Chromosomo F	о 2
Complex	5 11
Normal	11
Other	25
Bone marrow blasts (%)	25
Median (range)	16 (6.0-32.5)
Hemoalobin (a/dL)	
Median (range)	9.0 (5.9-14.5)
Platelets $(10^9/L)$	
Median (range)	54.0 (4.0-653.0)
WBC (10 ⁹ /L)	. ,
Median (range)	2.7 (0.7-34.0)

 Table 2.
 Treatment response
 After four After eight cycles (n = 26) cycles (n = 41)Hematologic improvement 12 (29.3%) 4 (15.4%) 20 (48.9%) 10 (38.5%) Stable disease Failure 4 (9.7%) 4 (15.4%) CR 1 (2.4%) 3 (11.5%) PR 4 (9.7%) 5 (19.2%)

Voso MT et al. Clin Cancer Res 2009;15(15) August 1, 2009

DAC ± Valproic Acid in MDS and AML Phase 2 Randomized Study

	DAC (%) (n=70)	DAC + VPA (%) (n=79)	р.
No. CR	22 (31)	29 (37)	.479
BM Cr + HI + PR	14 (20)	17 (27)	.818
ORR	36 (51)	46 (58)	.407

Issa JP et al . Cancer 2015;121:556-61

Selected clinical trials of non-HDAC inhibitor combination therapies with hypomethylating agents in MDS

Study	Intervention	Design	N	Med Age	% MDS	ORR%*	CR%*	Med OS (ms)
Sekeres et al. [49]	AZA + LEN	Phase II	36	68	100%	72%	44%	13.6
Narayan et al. [50]	AZA + LEN	Phase II	32	73.5	19%	25%	12.5%	5
DiNardo et al. [51]	AZA + LEN	Phase I/II	88	67	51%	35%	17%	8.2
Sekeres et al. [33]	AZA	Phase II, RCT	Total, <i>n</i> = 277	70	82%	AZA	AZA	AZA
	AZA + LEN		AZA, <i>n</i> = 92			37%	24%	15
			AZA + LEN, $n = 93$			AZA + LEN	AZA + LEN	AZA + LEN
						45%	21%	18
						[p vs. AZA= 0.45]	[p vs. AZA = 0.73]	[p vs. AZA = 0.38]
Mittelman et al. [46]	AZA + LEN	Phase II	18	-	100%	78%	44%	-
					HR and LR MDS			
					Selected for 5q-			
Platzbecker et al. [47]	AZA + LEN	Phase I	19	69	65%	42%	11%	
					Selected for 5q-			
Ades et al. [48]	AZA + LEN	Phase I-II	49	69	63%	24%	8%	-
					IPSS-2 or high risk MDS			
					Selected for 5q-			
ltzykson et al. [55]	AZA + ESA	Retro.	Total, <i>n</i> = 282	72	Total 77%	AZA 43%	AZA 13%	AZA
			AZA, <i>n</i> = 239		AZA 84%	AZA + ESA 53%	AZA + ESA 19%	11.9
			AZA + ESA, n = 32		AZA + ESA 76%	[p vs. AZA= 0.34]		AZA + ESA 19.6
								[p vs. AZA = 0.04]
lobiasson et al. [58]	AZA + ESA	Phase II	lotal, $n = 30$	69	100%	AZA 23%	-	-
			AZA, $n = 30$		IPSS low and Int-1	AZA + ESA 7%		
			Non-responders to AZA		refractory to ESA			
			monotherapy received					
Kantariine at al. [60]			AZA + ESA, n = 16	71	1000/	AZA 150/		
Kantarjian et al. [60]	AZA + ROIM	Phase II, RCI	10tal, $h = 40$	71		AZA 15%	-	
			AZA, $n = 13$		IPSS LOW, INT-1, INT-2	AZA + ROM (500 μ g) 8%		
			AZA + ROM (500 μ g),			AZA + KOM (750 μ g)		
			11 = 15			14%		
			$AZA + ROW (750 \mu g),$					
Groophorg at al [50]		Phace II PCT	n = 14	69	100% IPSS low Int	DAC 2104		
dicemberg et al. [39]		riase II, nei	DAC n = 14	00	high risk MDS	$DAC \perp ROM 33\%$	$DAC \rightarrow ROM 13\%$	_
			DAC + ROM n - 15		nigh hisk Mb5	n = NS	p = NS	
Svensson et al [62]	$A7A \pm FIT$	Phase I	12	74	100%	ρ = 113 67%	β = 113 33%	_
Strati et al [64]		Phase I/II	54	65	5%	26%	2%	5 5
Daver et al [68]	AZA + GEM	Phase II	110	70	22%	_	35%	7.2
Fathi et al. [70]	HMA + SGN-33A	Phase 1	23	70	0% MDS	65%	22%	-
		i nase i			100% AML	00,0	/3	
Ravandi et al. [72]	DAC + SAP	Phase I/II/III	33	77	0% MDS	37%	30%	7.8
					100% AML			
Nevada et al. [75]	AZA + RIG	Phase I/II	12	71	61%	50%	8.3%	_
Tibes et al. [79]	AZA + SON	Phase I/Ib	29	72	31%	_	40% or 2/5 untreated	-
							MDS	
Ritchie et al. [98]	AZA + BIR	Phase II	6	\geq 60	100%	83%	50%	-

Rationale for a combination of azacitidine (AZA) and lenalidomide (LEN) in MDS or AML

Platzbecker U, et al; Leukemia (2013) 27, 1813–1819

SWOG-S1117 Trial: AZA vs AZA/LEN vs AZA/VOR in MDS and CMML

- Primary endpoint: overall response rate
- No significant difference in ORR between AZA and the combination regimens:
- AZA versus AZA/LEN *p* = 0.38
- AZA versus AZA/VOR *p* = 0.17
- AZA versus combinations p = 0.19
- Subgroup analyses:
- – Higher-risk MDS: Similar ORR and OS
- CMML: ORR significantly higher with AZA/LEN compared to AZA (63% vs 29%; p = 0.04)

Comparisons are between combination arms and AZA monotherapy

AZA (n=92), AZA+LEN (n=94), AZA+VOR (n=92)

Pracinostat + Azacitidine in MDS: Study Design

• Randomized, multicenter phase II trial (24 sites in US)

Stratified by IPSS risk group

- Primary endpoint: confirmed CR by IWG criteria within 6 cycles
- Secondary endpoints: ORR, hematologic improvement, CBR, duration of response, PFS, rate of leukemic transformation, OS, safety and tolerability

Pracinostat + Azacitidine in MDS: Response

Endpoint, %	Pracinostat + Azacitidine (n = 51)	Placebo + Azacitidine (n = 51)
CR within 180 days	18	33
Best response		
■ CR	20	33
■ PR	0	0
■ SD	26	29
■ PD	6	6
Hematologic improvement	35	55
Erythroid	28	45
Platelet	31	53
Neutrophil	26	39
Clinical benefit rate*	53	63
Cytogenetic response	42	55
Cytogenetic CR	24	29
Cytogenetic PR	18	26

*CR + PR + hematologic improvement + molecular CR

Pracinostat + Azacitidine in MDS: Overall Survival and Duration of Response

• Median follow-up: 15.4 mos

1-yr OS: Pracinostat 57.1%; Placebo 57.4%

Garcia-Manero G, et al. ASH 2015. Abstract 911

Rigosertib (Kinase Inhibitor) + Azacitidine in MDS: Study Design

Phase I study of rigosertib + azacitidine suggested clinical activity in MDS post-HMA failure with toxicity similar to single-agent azacitidine

Navada SC, et al. ASH 2014

• Open-label, multicenter phase II study^[1]

Bone marrow aspiration/ biopsy: Wk 4, every 8 wks after

• Endpoints: CR, PR, bone marrow response, improvement in neutrophil, platelet, and erythroid counts, safety and tolerability

Navada SC, et al. ASH 2015. Abstract 910.
Rigosertib + Azacitidine in MDS

Characteristic	MDS Pts (N = 37)
Age, median yrs (range)	64 (25-85)
Male, %	73
Earlier HMA therapy, % Azacitidine Decitabine Both None 	27 8 3 62
IPSS risk group, % Intermediate-1 Intermediate-2 High 	27 41 32

Parameter	MDS Pts (N = 37)
Evaluable for response,* n	30
Duration of treatment, median mos (range)	4 (1 to ≥ 27)
Overall response, %	77
Hematologic response, [†] % CR PR Bone marrow response SD PD	20 0 53 20 3

Inhibition of BCL2L10 by ABT-737 reverses AZA resistance

 Percentage of BCL2L10-positive cells in bone marrow significantly higher in AZA-resistant patients (P < .0001, all comparisons)

Aberrant up-regulation of PD-L1, PD-L2, PD-1 and CTLA4 in CD34+ cells from MDS, CMML and AML

Yang et al. Leukemia 2014

MDS treatment algorithm

Bejar R and Steensma DP Blood 2014;124:2793-2803

L'attuale approccio clinico al paziente con Sindrome Mielodisplastica